快捷搜索:

为啥录制传输时限信号要用编码器和译码器?【

为什么视频传输信号要用编码器和译码器? 答:视频传输可以理解为一个双向通道,将视频复合到 一个计算机网络上传输,其中编码器用在前端,主要是提供 视频压缩功能,完成图像数据的采集。译码器(即解码器) 在后端,在译码器中复原视频信号的原貌,通过硬网懈 (计算机程序)获得直接的视频信号,通过双绞线传输到计 算机上。因此,视频传输信号要用编码器和译码器。

表1中,13帧图像构成一个图像组,第1帧I帧采用帧内编码,第2、3B帧是由第1、4帧通过双向预测得到,第4帧P帧是由第1帧通过前向预测而得。编码器在编完第1帧后,先缓存第2、3帧图像,对第4帧图像进行编码,然后再对第2、3帧图像进行编码,依次类推,最后得到的编码输出顺序如表2所示。

在发射端,信号输入到信道编码器以后,按照码元映射规则编码,编码后得到的信号序列由数字调制器进行调制,输出连续的调制波形,经驱动电路后直接驱动可见光光源发光。在接收端,光敏元件将接收的光信号转换成与入射能量成比例的光电流,该光电流经过调理电路调理成适合数字解调器电路的信号输入到数字解调器中,经过数字解调器解调和信道译码器译码,最终恢复出信息。

由图4还可看出,MPEG-2编码器中有单一的共同系统时钟STC (27MHz),此时钟用来产生指示音频/视频正确解码和显示时序的时间标签,同时,可用来指示在抽样瞬间系统时钟时间的瞬时值。该时钟由输入视频的行同步锁相,当输入是SDI信号时,由其时钟经10分频产生编码器的系统时钟。正是编码器中共同系统时钟的出现,以及解码器中时钟的重新生成和时间标签的正确使用,才为解码器中操作的正确同步提供了基准。为实现编解码器的时钟同步,在编码器中对STC系统时钟进行计数,每隔一定的传输时间,在经过选择的TS包的适应头中,传输该计数器的抽样值给接收机,作为解码器的节目时钟参考信号,既PCR。PCR有效位为42b,其中高33b为PCR_Base,是以27MHz时钟,经300分频后的时钟为单位的计数值,低9b为PCR_Extension,是以27MHz时钟为单位的计数值。除PCR外,解码时间标签DTS和显示时间标签PTS,也非常重要。它们与PCR_Base相似,也是以编码器27MHz的系统时钟,经300分频后为单位的计数值来创建的。其中,DTS用于指示解码器何时对接收的图像、音频帧进行解码,PTS用于通知何时显示已解码的图像帧。

作为一项新兴的技术,我们国家也越来越重视可见光通信的发展,2012年 3 月 29 日在国家科技部网站上公布的《“十二五”国家科技计划信息领域2013 年度备选项目征集指南》中,已经将“可见光通信(VLC)系统关键技术研究”列为“网络与通信”类别下的单独课题,旨在开发可见光(波长 380nm-780nm)新频谱资源,研究可见光通信系统在复杂信道条件下非相干光散射畸变检测技术、调制编码、光电多维复用与分集、最佳捕获检测等关键技术,建立实验系统,传输速率大于 480Mbps,开展标准研究。2013年10月,复旦大学计算机科学技术学院的研究人员将这种利用屋内可见光传输网络信号的国际前沿通讯技术在实验室成功实现。他们将网络信号接入一盏1W的LED灯珠,灯光下的4台电脑即可上网,最高速率可达3.25G,平均上网速率达到150M。

众所周知,同步是实现电视正确显示的必要条件。对数字电视来说,由于在压缩编码过程中,利用缓存器对信号存储,复用器中信号的时间轴是变动的,加上数据冗余量大小的不同,压缩比也不同,因此时间轴变动很大,尤其是在帧组层处理中,B帧和P帧的顺序也发生了变化。所有这些,使得数字电视信号的同步,完全失去了原来序列的概念。实现同步的有效办法,就是在信号码流中,每经过一个规定的间隔加入一个时间标签。有了这个标签,就可以在接收端在显示之前的解码过程中,根据这个时间标签进行重新排序,重建在压缩编码之前图像的顺序,以及声音和图像之间的时间关系,从而实现图像同步及声音与图像同步。

可见光通信(Visible Light Communications,VLC)技术是近十年来迅速发展的一种新型无线通信方式,通过在公共基础照明设施上增加数据传输辅助功能,将通信与室内照明光源相结合,就可构建室内可见光无线通信网络,实现信息从服务器到达客户端的无线传输。由于可见光与日常生活息息相关,办公室、家庭以及公共场合中许多设备均含可见光光源,例如,办公室的电灯、道路上的信号灯、广场上的显示屏等等,所以室内可见光通信技术可以满足用户对移动通信网络覆盖范围广、链路质量高的要求,为室内用户提供随时随地的便捷数据服务。同时,室内可见光通信技术使用可见光这种特殊的传输介质,可以保证移动通信网络的安全性,包括网络数据安全与用户健康安全,使得用户信息的私密性得到保障,不能被其他用户恶意截获,而且使用者即使长时间处于移动通信网络中,也不会对自身健康造成影响。

即开彩app下载 1

典型的室内可见光通信系统主要包括信道编码器/译码器、数字调制器/解调器、驱动电路、调理电路、可见光光源和光敏元件。可见光光源和光敏元件是室内可见光通信系统的基本器件,其中可见光光源结合驱动电路可以将电信号转换成光信号,实现基本照明功能,并发射出携带调制信息的可见光;光敏元件则捕捉可见光信号,将其转换成能被后级调理电路处理的光电流。数字调制器/解调器则是可见光通信系统中完成通信功能的关键部分,其中调制器实现对可见光光源所发出光的某种特性(例如光照强度)进行控制,将原始信息通过光信号进行传输。解调器则实现从接收的信号中恢复出所携带信息的功能。信道编码器/译码器是室内可见光通信系统链路可靠性和有效性的保障,用来纠正信道传输过程中出现的随机错误和突发错误,实现信息的正确传输。

即开彩app下载 2  

随着照明光源制造工艺的发展,将通信功能与照明功能相结合的可见光通信技术越来越受到研究人员的重视。可见光通信技术可以应用在很多场合,如基于照明光源的家庭无线网络,基于基础照明设施的办公场所内高速数据传输系统,基于车灯的车与车之间数据通信系统等等。

随着我国数字电视的迅猛发展,以及城市广电网络数字化改造的推进,越来越多的人们开始采用机顶盒来收看数字电视节目。但在通过机顶盒收看电视节目的过程中,观众有时会发现一些音画不同步的现象。这也引起了我们的注意。

2011年,德国物理学家哈拉尔德·哈斯教授在英国爱丁堡大学TED全球公开课上,向科技迷们展现了一个神奇的发明:他身旁放了一个LED台灯,台灯下30厘米左右处有一个小小的设备,当他把灯打开,灯光照向这个设备时,他身后的大显示屏上播放起花朵盛开的视频。此时或许你并没有意识到有多么神奇。而当哈斯教授将手挡在台灯与接收器之间时,身后正在播放的视频戛然停止;当他把手拿开时,视频又开始播放起来。这个时候,在场的所有人都起立鼓掌。这就是可见光通信。

(全文完)

随着智能设备的普及,网络逐渐成为人们生活的一部分。我们通过网络了解新闻,查阅资料,观看电影等等。在网络为我们的生活带来极大便利的同时,我们也时常被诸如网络信号不好,上网速度慢,找不到WIFI热点等问题所困扰。可见光通信技术的出现将有可能使上述问题得到解决。

第二个测量点,我们选择了网络公司的前端机房。如图2所示,在这里,我们选取了现在国内使用的主要几个品牌的机顶盒做测试,将TG700的测试信号,通过原来我们在用的编码器编码后,插入我们现在在播的频道,然后在前端机房用机顶盒把电视信号解调出来。解出来的音/视频信号,再通过一台松下公司的D950录像机,把模拟的信号进行A/D和加嵌处理后,送到WFM7120进行测量。测量结果显示,这几种机顶盒的音/视频时延差表现不一,有的超前了150ms,有的滞后了300ms。这表明不同的机顶盒,对同样的数字电视信号进行解调、解码后保持音/视频信号之间的同步关系有不同的能力。  

12>

在实际应用中,有些编码器由于输入视频信号的时基不稳,导致其输出时钟发生抖动,帧同步的间隔不是40ms。这些编码器,在根据PCR和缓冲延时设定初始的DTS值后,每帧的DTS值,由上一个DTS加上一个固定值得到(该值可由如下计算而得:27MHz经300分频后为90kHz,PAL制电视每秒为25帧,由此,该值是90000/25=3600),并根据帧类型和GOP类型计算出PTS值。但这段时间PCR值并不是增加3600,导致DTS和PTS相对PCR变大或变小。有些解码器(机顶盒)没有采用压控震荡器,其系统时钟为固定的27MHz,只是用接收到的PCR值,初始化本地系统时钟计数器的值。编码器和解码器(机顶盒)之间不能保持严格的锁定,这样就可能导致解码器(机顶盒)丢帧。而有的解码器(机顶盒)在发生丢帧的情况后就不再严格按DTS和PTS解码显示,而是根据缓冲区的情况来解码,由于视音频编码的延时不一样,就可能导致音画不同步。

当然,作为一种尚在实验室的全新网络技术和产品,可见光通信技术还存在一些待解决的问题。例如暂时还没有专用的可见光通信芯片组,发射和接收系统非常庞大,接收器被物体阻挡时信号会被切断等等。尽管如此,可见光通信作为一种与WIFI相互补充的技术还是有着广阔的发展前景的。相信在科研人员的努力下,可见光通信技术会日趋完善,并为我们的生活提供更大的便利。

播控中心内部测试

关键词:音画不同步 MPEG-2 PCR DTS PTS 编码器 解码器

即开彩app下载 3  

即开彩app下载 4

PTS和DTS只是一个33b的数值,如果没有PCR所代表的时间轴做参考,这个数值是没有意义的。为了保持正确解码,必须使编码器和解码器(机顶盒)的系统时钟保持锁定,即它们的频率保持一致,以及它们各自的计数器的初始值一致。

不同编码器的测试

解码器(机顶盒)中有一个频率为27MHz左右的压控振荡器(VCO),输出信号作为系统时钟送入计数器中产生当前的STC样值,它与PCR一样也是42b的一个数值。其中,高33b是以27MHz经过300粉频后的时钟为单位的计数值,低9b是以27MHz时钟为单位的计数值。当一个新节目到达解码器(机顶盒)时,解码器(机顶盒)从码流中获得PCR值,用其PCR_Extention值与当前STC的低9b位作比较,得到误差信号,再通过锁相环电路去调整压控振荡器,使解码器(机顶盒)的系统时钟频率,与编码器的系统时钟频率保持一致。从码流中依次获得各帧的PTS与DTS值,将其和当前STC值的高33b位作比较。如果DTS值大于STC值,则对码流进行缓存,同时监测STC值的变化,当STC值增大到与DTS值相等时,对该帧码流进行解码,当STC值与PTS值相等时,播放该帧。如果由于传输网络的缓冲延时抖动,当码流到达解码器(机顶盒)时,其PTS值已经小于STC值,则解码器(机顶盒)跳过这一帧,丢弃该帧数据。由于PTS和DTS是根据PCR值产生的,因此必须将获得的第一个PCR值,作为初始值去置位解码器(机顶盒)的STC计数器,使它们的值一样,否则,将导致时基不同,从而解码出错。音频与视频的处理相似,只是不存在时序重排的问题。图5所示是解码器(机顶盒)PCR工作原理图。

现象及测试

目前,在我国的数字电视传输系统中, MPEG-2标准作为重要的音视频压缩标准,在对信号源端的节目信号压缩、编码、复用,以及接收端对信号的解复用和解码部分,得到了广泛的应用。而我们正在使用的数字传输系统,正是基于MPEG-2标准的系统。下面我们来看看MPEG-2的系统结构,如图4中所示。

解码器(机顶盒)的定时原理

由以上分析可以看出,编码器和解码器(机顶盒)都有可能导致音画不同步的发生。我台在对各品牌的编码器进行测试后,选择了一家测试指标比较好的编码器,替换下原来的编码器,使得电视音画不同步的现象得到了较大改善。而网络公司在下一步引进机顶盒的工作中,也将加强对相关指标进行测试,以改善广大观众的收视质量。当然,在推进我国广播电视数字化的进程中,还需要我们广大电视工作者,以及各设备生产厂家的共同努力,才能最终取得圆满成功。

即开彩app下载 5

原因分析

音画不同步产生原因

MPEG-2系统的定时原理

总结

贵阳市在2007年底基本完成了广电网络数字化改造,贵州电视台的节目也都进入了数字网络传输。在进入数字网以后,我们发现,我台的几套节目在有些地区出现了音画不同步的现象,特别是卫视频道和百姓频道在播报新闻时尤其明显。为了弄清楚问题出现在哪里,我们决定,在我台节目的整个传输路径,作一个唇音同步测试。用来做测试的设备是泰克公司的WFM7120,在做音/视频延时测量时,还需要通过TG700 DVG7产生一串短促的彩条视频信号,在这组视频信号中嵌入音频序列,其间隔为5s,将这样的信号送入被测系统,最后将信号送到WFM7120里以测量音、视频之间的定时差。  

即开彩app下载 6

不同机顶盒的测试

由表3和表4可看出,当解码器接收到某个含有一个I帧图像的存取单元时,在其文件数据包中应含有DTS与PTS,这两个标签的值之间的时间间隔为一个图像周期。在I帧图像之后是P帧,其文件数据包中也应有一个DTS和一个PTS,这两个标签的值之间的时间间隔是三个图像周期。然后是两个B帧,其文件数据包中只含有PTS。也就是说,I帧图像在解码后要延时一帧后才播放显示,在显示I帧时对第4帧P帧进行解码,但不播放显示,先缓存起来,当1I帧播放显示完后,立即解码显示2B帧,然后是3B帧,过后才显示缓存的4P帧,同时对7P帧进行解码并缓存,依次类推。可见,解码显示的图像顺序,与表1的图像输入顺序是一致的。

此外,在从编码器到解码器(机顶盒)的传输过程中,由于存在着复用器、调制器等变延时缓存的环节,可能导致PCR包的传输延时不恒定,有大有小。如果不对PCR进行修正,也可能导致以上问题的发生。

如图1所示,为了测量在电视台系统内部是否存在音/视频时延差,我们利用检修时间将TG700产生的测试信号录入播出硬盘,通过硬盘播放,以及将测试信号分别输入到延时器和帧同步模块后,在一个频道上播出,然后我们在传送部将信号传到网络公司的编码器之前,对这三路信号进行测量。测量结果显示,这三路信号的音/视频时延差均不超过12ms,即不够一场,表明信号在播控中心不存在音画不同步问题。  

即开彩app下载 7

由图4中可看出,音视频信号在经过压缩编码器去掉冗余信息后,形成基本码流。这个基本码流并不能被直接存储或传送,还必须送入特定的打包器,把基本码流按一定的格式分成段落,并加入特定的标识字符,形成所谓的打包基本码流(PES)。PES包是长度不固定的音、视频数据包,再把音视频PES包,以及辅助数据送入传输子系统,分割成一个又一个长度固定为188b的小数据包,并通过时分多工复用形成单一的TS流,该TS流经过信道传输后到达接收端。

在使用双向编码时,对某一图像的解码,必须在其显示之前的一段时间内进行,这样它才能作为解码B帧图像的源数据。例如,图像的显示顺序是IBBP,但图像的传输顺序则是IPBB。MPEG参考模型认为解码是瞬间发生的,即解码、显示同时进行。对于音频帧和图像B帧来说,解码时间和显示时间是一致的,PTS与DTS相同,因此只要传输PTS。对于视频I帧和P帧来说,由于存在帧重新排序,解码时间和显示时间不一样,此时必须同时传送PTS与DTS。当解码器接收到IPBB图像序列时,它必须在解码第一个B帧图像之前,对I帧和P帧图像解码。解码器每次只能解码一帧图像,因此先对I帧图像解码并将其存储起来,待P帧图像被解码时,就输出显示已解码的I帧图像,随后才解码显示B帧图像。表1、2、3、4所示,是编码器输入、输出的图像顺序、各帧的PTS、DTS值,以及解码器对各帧图像的解码和显示顺序。

即开彩app下载 8

如图3所示,我们仍然用TG700信号发生器,对不同编码器进行测试,擦启用编码器、调制器和机顶盒构建了一个模拟的播出/收看环境。在这里,我们采用了不同品牌的几种编码器,对TG700的测试信号进行编码后,经过相同的调制器调制,再用同一个机顶盒把信号解出来,同样经过D950处理后送到WFM7120测量。最后测量的结果是,它们的音/视频时延差有的是30ms,有的则达到了300ms,表明了不同的编码器,对机顶盒最终收看信号的音/视频同步有较大影响。

即开彩app下载 9  

本文由即开彩app下载发布于冶金矿产,转载请注明出处:为啥录制传输时限信号要用编码器和译码器?【

Ctrl+D 将本页面保存为书签,全面了解最新资讯,方便快捷。